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Early-career setback and future career impact
Yang Wang 1,2,3,4, Benjamin F. Jones1,2,3,5 & Dashun Wang 1,2,3,6

Setbacks are an integral part of a scientific career, yet little is known about their long-term

effects. Here we examine junior scientists applying for National Institutes of Health R01

grants. By focusing on proposals fell just below and just above the funding threshold, we

compare near-miss with narrow-win applicants, and find that an early-career setback has

powerful, opposing effects. On the one hand, it significantly increases attrition, predicting

more than a 10% chance of disappearing permanently from the NIH system. Yet, despite an

early setback, individuals with near misses systematically outperform those with narrow wins

in the longer run. Moreover, this performance advantage seems to go beyond a screening

mechanism, suggesting early-career setback appears to cause a performance improvement

among those who persevere. Overall, these findings are consistent with the concept that

“what doesn’t kill me makes me stronger,” which may have broad implications for identifying,

training and nurturing junior scientists.
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“Science is 99 percent failure, and that’s an optimistic
view”, said Robert Lefkowitz, who was awarded the
Nobel prize in 2012 for his groundbreaking studies of G

protein-coupled receptors. Despite the ubiquitous nature of fail-
ures, it remains unclear if a setback in an early career may aug-
ment or hamper an individual’s future career impact. Indeed, the
Matthew effect1–9 suggests a rich get richer phenomenon where
early-career success helps bring future victories. In addition
to community recognition, bringing future attention and
resources5,7,8,10–15, success may also influence individual moti-
vation16, where positive feedback bolsters self-confidence. Toge-
ther, these views indicate that it is early-career success, not failure,
that would lead to future success. Yet at the same time other
mechanisms suggest that the opposite may also be true. Indeed,
screening mechanisms17,18 suggest that, if early-career failures
screen out less-determined researchers, early setbacks among
those who remain could, perhaps counterintuitively, become a
marker for future achievement. Further, failure may teach valu-
able lessons that are hard to learn otherwise19–21, while also
motivating individuals to redouble effort22,23, whereas success
may be associated with complacency16 or reduced future effort
due to utility maximization24. Such positive views of failure are
reflected in Nietzsche’s classic phrase “what doesn’t kill me makes
me stronger”25, in the celebration-of-failure mindset in Silicon
Valley26, and in a recent commencement address by U.S.
Supreme Court chief justice John Roberts, who told graduating

students “I wish you bad luck.” Overall, these divergent per-
spectives indicate that the net effect of an early-career setback is
unclear. Given the consequential nature of this question to
individual careers and the institutions that support and nurture
them, and building on the remarkable progress in our quantita-
tive understanding of science1,2,7–9,27–51, here we ask: Can an
early-career setback lead to future career impact?

To offer quantitative answers to this question, we leverage a
unique dataset, containing all R01 grant applications ever sub-
mitted to the NIH, to examine early-career success and failure.
NIH funding decisions are largely determined by paylines derived
from evaluation scores. Our empirical strategy harnesses the highly
nonlinear relationship between funding success and evaluation
score around the funding threshold (Fig. 1a). Indeed, focusing on
individuals whose proposals fell just above and below the threshold
allows us to compare observationally-similar individuals who are
either near misses (individuals who just missed receiving funding)
or narrow wins (individuals who just succeeded in getting funded).
Here we focus on junior scientists by examining principal inves-
tigators (PIs) whose first application to the NIH was within the
previous three years. We combine the NIH grant database with the
Web of Science data, tracing their NIH R01 grant applications
between 1990 and 2005 together with research outputs by the PIs,
measured by their publication and citation records (see Supple-
mentary Note 1 for details). In total, our analyses yielded 561
narrow wins and 623 near misses around the payline.
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Fig. 1 Pre-treatment comparisons between the narrow-win and near-miss applicants. a Relationship between normalized score and award status. Funding
probability shows a clear transition around the funding threshold. We focus only on junior PIs whose normalized scores lie within the range (−5, 5), the
shaded gray area, which includes 561 narrow-win and 623 near-miss applicants in our sample. b Pre-treatment feature comparisons between the near-miss
and narrow-win group. We compared 11 different demographic and performance characteristics. The features are defined as follows (from top to bottom):
(1) percentage of female applicants; (2) number of years since the first R01 application; (3) number of years since the first publication; (4) institutional
reputation, measured by the number of R01 grants awarded to an institution between 1990 to 2005; (5) number of previous R01 applications; (6) number
of publications prior to treatment; (7) number of prior papers that landed within the top 5% of citations within the same field and year; (8) probability of
publishing a hit paper; (9) average citations papers received within 5 years of publication; (10) citations normalized by field and time;34 and (11) average
team size across prior papers. We see no significant difference between the two groups across any dimension we measured; Error bar represents the 95%
confidence interval. c An illustrative example of the underlying process. Solid color indicates people who remained active, whereas shaded color denotes
the fraction that disappeared from the NIH system. Blue and orange indicate narrow-win and near-miss applicants, respectively
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We examine performance and demographic characteristics for
the two groups of PIs, finding that prior to treatment, they are
statistically indistinguishable along all dimensions we measured
(Fig. 1b). Yet the treatment created a clear difference between the
two, whereby one group was awarded R01 grants, which on
average amount to $1.3 million for five years, while the other
group was not. Given the pre-treatment similarity between the
two groups, we ask: which group produced works with higher
impacts over subsequent years?

Results
Future career impact. We therefore traced the publication
records of PIs from the two groups. We first focus on active PIs in
the NIH system, defined as those who apply for and/or receive
NIH grants at some point in the future (Fig. 1c and ‘Different
definitions of active PIs’ in Supplementary Note 3). We calculated
the publication rates of the PIs, finding that the two groups
published a similar number of papers per person over the next
ten-year period (Fig. 2a), consistent with prior studies8,15,52. We
then computed, out of the papers published by the near-miss and
narrow-win group, the probability of finding hit papers (Fig. 2b),
defined as being in the top 5% of citations received in the same
year and field (as indicated by the Web of Science subject cate-
gory)34,37. In the first five years, 13.3% of papers published by the

narrow-win group turned out to be a hit paper, which is sub-
stantially higher than the baseline hit rate of 5%, demonstrating
that narrow wins considered in our sample produced hit papers at
a much higher rate than average scientists in their field. We
measured the same probability for the near-miss group, finding
that they produced hit papers at an average rate of 16.1%.
Comparing the two groups, we find near misses outperformed
narrow wins significantly, by a factor of 21% (χ2-test p-value <
0.001, odds ratio= 1.25). This performance advantage persisted:
We analyzed papers produced in the second five-year window
(6–10 years after treatment), uncovering a similar gap (Fig. 2b, χ2-
test p-value < 0.001, odds ratio= 1.19). To ensure the observed
effect is not just limited to hit papers, we also quantified per-
formance using other commonly used measures, including aver-
age citations received within five years of publication (Fig. 2c) and
the relative citation ratio (RCR) of each paper (see ‘Normalized
citations over time and disciplines’ in Supplementary Note 3)
53,54, arriving at the same conclusions. Indeed, papers published
by the near-miss group in the next two five-year periods attracted
on average 19.4% (32.3 for near misses and 27.0 for narrow wins,
t-test p-value < 0.001, Cohen’s d= 0.08) and 12.0% more citations
(32.3 for near misses and 28.8 for narrow wins, t-test p-value <
0.001, Cohen’s d= 0.06) than those by the narrow-win group,
respectively (Fig. 2c).
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Fig. 2 Comparing future career outcome between near misses (orange) and narrow wins (blue). a The average number of publications per person. b Near
misses outperformed narrow wins in terms of the probability of producing hit papers in the next 1–5 years, 6–10 years, and 1–10 years. Note that there
appears a slight performance improvement for the narrow-win group in the second five-year period, but the difference is not statistically significant (χ2-test
p-value > 0.1, odds ratio= 1.05). c Average citations within 5 years of publication. The near-miss applicants again outperformed their narrow-win
counterparts. To ensure all papers have at least 5 years to collect citations, here we used data from 1990 to 2000 to avoid any boundary effect. d Funding
difference between the near-miss and narrow-win group from the NIH (near misses minus narrow wins). ***p < 0.001, **p < 0.05, *p < 0.1; Error bars
represent the standard error of the mean

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12189-3 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4331 | https://doi.org/10.1038/s41467-019-12189-3 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


To further test the robustness of our results we repeated our
analyses along several dimensions. We changed our definitions of
junior PIs to two alternatives, by focusing on first-time R01
applicants only and by restricting to those without any current
NIH grants (‘Alternative definitions of junior PIs’ in Supplemen-
tary Note 3). We varied our definitions of hit papers (from top 1%
to top 15% of citations, ‘Varying thresholds for the definitions of
hit papers’ in Supplementary Note 3). We computed per capita
measures of hit papers (‘Hits per capita’ in Supplementary
Note 3). We adjusted for field differences of citations, by
calculating the average normalized citations by field and year34

(‘Normalized citations over time and disciplines’ in Supplemen-
tary Note 3). We also varied our definition of fields using the
Medical Subject Headings (MeSH)55 (‘Different field definition’
in Supplementary Note 3). We repeated our analyses across
different measurement time periods (‘Robustness to alternative
fiscal years’ in Supplementary Note 3). We also checked whether
the results may be affected by pre-existing papers moving through
the publication process (‘Publication lags’ in Supplementary
Note 3). We further repeated our analyses by controlling ex post
funding status for narrow wins and near misses (‘Robustness for
ex post funding status’ in Supplementary Note 3). We also tried
several name disambiguation methods and repeated our analyses
(‘Author name disambiguation’ in Supplementary Note 1). Amid
all variations, the conclusions remain the same.

The performance advantage of the near misses is particularly
surprising given that the narrow wins, by construction, had an
initial NIH funding advantage immediately after treatment. Given
that funding from the NIH can be an important means to
augmenting scientific production35,38,39,52,56–58, we investigate
funding dynamics for the near-miss and narrow-win groups over
the following ten-year period. We find that the near-miss group
naturally received significantly less NIH funding in the first five
years following treatment, averaging $0.29 million less per person
(Fig. 2d, t-test p-value < 0.05, Cohen’s d= 0.28), which is
consistent with prior studies8,52,59. Yet the funding difference
between the two groups disappeared in the second five-year
period (Fig. 2d, t-test p-value > 0.1, Cohen’s d= 0.02). Although
the NIH is the world’s largest funder for biomedical research,
near misses might have obtained more funding elsewhere (see
‘Additional funding by near misses’ in Supplementary Note 3 for
details). To test this hypothesis, we further collected individual
grant histories for PIs in our sample from the Dimensions data,
allowing us to calculate the total funding support from agencies
worldwide beyond NIH. We first measured the total funding
support from the U.S. National Science Foundation (NSF)
received by individuals with the same name in the same period,
finding narrow wins obtained significantly more NSF funding
within 5 years after treatment. We further calculated the total
funding support from agencies other than the NIH or NSF,
finding that near misses did not acquire more funding than
narrow wins. We also manually checked acknowledgment
statements within a fraction of papers published by the two
groups, finding again the same conclusion.

Together, these results demonstrate that over the course of ten
years, near misses had fewer initial grants from the NIH and NSF.
Yet they ultimately published as many papers and, most
surprisingly, produced work that garnered substantially higher
impacts than their narrow-win counterparts.

Is the uncovered difference in outcomes causally attributable to
the early-career setback? Or, could it be explained by other
alternative forces? Indeed, there might still exist observable or
otherwise unobserved factors that affect funding success near the
threshold (e.g., individual characteristics60, fields of study,
personality traits, etc.), which might also drive future career
outcomes. To rule out alternative explanations, we leverage two

additional inference techniques, Coarsened Exact Matching
(CEM)61,62 and fuzzy Regression Discontinuity (RD)63,64. We
first matched near misses and narrow wins with respect to a wide
range of observable characteristics (see Methods section for
further description of CEM), and find that after matching, near
misses still outperformed narrow wins in terms of both hit papers
(16.4% for near misses, 14.0% for narrow wins, χ2-test p-value <
0.001, odds ratio= 1.20) and average citations per paper (30.8 for
near misses and 27.7 for narrow wins, t-test p-value < 0.001,
Cohen’s d= 0.05, see ‘Matching strategy and additional results in
the RD regression’ in Supplementary Note 3 for details). While
matching can only eliminate potential observable features, we
further mitigate the effect of other observable and unobservable
influences using the RD analysis. Specifically, we use an indicator
for the score being above or below the funding threshold as an
instrumental variable (IV), rather than the actual funding
outcome itself, to predict future career outcomes (see Methods
section). The RD approach helps us rule out unobserved
influences on funding outcome or any otherwise unobserved
individual characteristics that differ smoothly with the score63,64,
allowing us to further establish a causal link between early-career
near miss and future career impact. By accounting for any
potential confounding factors, our RD estimates indicate that one
early-career near miss increases the probability of publishing a hit
paper in the next 10 years by 6.1% (p-value= 0.041), and the
average citations per paper by 34% (9.67 citations in 5 years, p-
value= 0.046) (see Methods section). The RD analyses help
establish the causal interpretation of our results, and the
agreement in results across all the methods further demonstrates
the robustness of our findings.

These results document that, despite an early setback, near
misses outperformed narrow wins over the longer run, condi-
tional on remaining active in the NIH system. This finding itself
has a striking implication. Indeed, take two researchers who are
seeking to continue their careers in science. While both near-miss
and narrow-win applicants published high-impact papers at a
higher rate than their contemporary peers, comparing between
the two groups, it is the ones who failed that are more likely to
write a high-impact paper in the future.

To conceptualize this finding, consider two hypotheses. The
first is a screening hypothesis, where the population of survivors
among the near-miss group may have fixed, advantageous
characteristics. Second, the result is consistent with failure itself
teaching valuable lessons or strengthening resolve. To help
unpack the findings, we examine differential survival rates
between two samples and further ask whether the screening
hypothesis alone may be sufficient to explain the observed
difference in outcomes.

Screening hypothesis. We first investigate attrition rates by
studying the percentage of the initial PIs who remained active in
the NIH system and find that the attrition rate of the two groups
differed significantly (Fig. 3a). In the year immediately following
treatment, the near-miss group had 11.2% fewer active PIs than
the narrow-win group (χ2-test, p-value < 0.001). This difference is
not simply because narrow wins received an initial grant. Indeed,
the gap persisted and extended beyond the first five years,
remaining at 11.8% in year seven (χ2-test, p-value= 0.002), fol-
lowed by a drop afterwards. The RD analysis indicates that an
early-career near miss on average led to a 12.6% chance of dis-
appearing permanently from the NIH system over the next ten
years (see Methods section). These results thus highlight the
fragility of a junior scientific career, with one early near miss
being associated with significantly higher attrition from the NIH
system, despite the fact that to become an NIH PI, one had to go
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through years of training with a demonstrated track record of
research. Notwithstanding the evidence that PhDs who left sci-
ence are disproportionally employed at large, high-wage estab-
lishments65, Fig. 3a documents differential survivorship between
narrow wins and near misses, which raises the important next
question: Could screening alone account for the observed per-
formance advantage?

To understand the nature of the potential screening effect, we
first test its underlying assumption by comparing pre-treatment
characteristics of near misses and narrow wins who remained ex
post, finding a lack of difference between these two groups in any
observable dimension ex ante (Supplementary Fig. 29a), which
suggests the screening effect, if any, may be modest (‘On the
screening mechanism’ in Supplementary Note 3). To further
examine potential screening effects, we removed PIs from narrow
wins, such that the attrition rate following removal is the same
between the two groups (Fig. 3b). We performed a conservative
estimation by removing PIs from narrow wins who, ex post,
published the fewest hit papers but had the most publications. In
other words, we created a subpopulation of narrow wins that had
the same attrition rate as the near misses but are aided by an
artificial upward adjustment to their hit probabilities (‘On the
screening mechanism’ in Supplementary Note 3). We find that,
while the performance of narrow wins improves by construction
following this conservative removal procedure, the improvement

is not sufficient to account for the observed performance gap.
Indeed, in terms of the probability of producing a hit paper, or
the average citations per paper, near misses still outperformed
narrow wins (Fig. 3c, d). The matching and the RD yield
consistent conclusions (‘Matching strategy and additional results
in the RD regression’ in Supplementary Note 3). Together, these
results demonstrate that the screening effect may have played a
role, but it appears insufficient to entirely account for the
observed difference between near misses and narrow wins.

We clarify these results further on several dimensions. To
understand if the average improvement of the near misses masks
heterogeneous responses, we measured the coefficient of variation
for citations, finding a lack of difference between the two groups,
suggesting a homogeneous improvement within the group
(‘Variance and outliers’ in Supplementary Note 3, Supplementary
Fig. 23). We also compared the median citations to eliminate the
role of outliers, yielding the same conclusion (‘Variance and
outliers’ in Supplementary Note 3). To rule out collaboration
effects, whereby early-career setbacks might lead junior scientists
to seek out advantageous collaborations, we restricted our
analyses to lead-author publications only, and controlled for the
status of their collaborators, yielding the same conclusions
(Supplementary Figs. 13, 27). Further, to check that the
uncovered performance gap is not simply because narrow wins
became worse, we selected a group of clear winners whose scores
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years after treatment. b An illustration of the conservative removal procedure. To test if the observed performance difference can be accounted for by the
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the narrow-win group (blue), such that after removal (green) the two groups have the same fractions of PIs remaining. After removal, the near-miss group
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**p < 0.05, *p < 0.1; Error bars represent the standard error of the mean
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were further removed from the funding threshold. We find, as
expected, that this group of PIs performed substantially better
than the near-miss group prior to treatment. Yet, in the ten years
afterwards, they show a similar performance as the near-miss
group (‘Was it because narrow wins became worse?’ in
Supplementary Note 3), indicating that near misses performed
at a comparable level as the group that appeared demonstrably
better than them initially. To test the hypothesis that narrow wins
were committed to initially proposed ideas, we compared articles
by narrow wins published in 5 years after treatment with those
published between 6 to 10 years. We find no statistically
significant improvement for narrow wins in terms of probability
to publish hit papers (χ2-test p-value > 0.1) or normalized
citations (t-test p-value > 0.1) (‘Was it because narrow wins
became worse?’ in Supplementary Note 3). We also controlled for
fixed effects categorizing PIs’ prior NIH experience, recovering
the same conclusions (Supplementary Fig. 31). We also repeated
all our analyses by varying our definition of active PIs by focusing
on publishing scientists only (‘Different definitions of active PIs’
in Supplementary Note 3, Supplementary Fig. 25), and the
definition of pay lines by using the NIH percentile score instead
of priority score (Supplementary Fig. 26). Amid all variations, our
findings remain the same.

Beyond citations. While citations and their variants have been
used extensively to quantify career outcomes7,41,45,66–69, they may
represent an imperfect or limited proxy for measuring output,
prompting us to ask if the observed effect of early-career setback
extends beyond citation measures. To this end, we used addi-
tional datasets to calculate three indicators probing the clinical
relevance of the works. These measures are: (1) whether a paper is
a clinical trial publication (direct contribution to clinical trans-
lation); (2) whether a paper has been cited by at least one clinical
trial publication (indirect contribution to clinical translation), and
(3) whether a paper has potential to become translational
research70 (potential for translation). We compared works

produced by near misses and narrow wins over the ten-year
period, finding that across all three translational dimensions, near
misses systematically outperformed narrow wins. Specifically,
near misses were 50% more likely to publish a clinical trial paper
compared with narrow wins (4.8% for near misses, 3.2% for
narrow wins, χ2-test p-value < 0.001, odds ratio= 1.53, Fig. 4a),
and their overall publications were 19.6% more likely to be cited
by clinical trials (34% for near misses, 28.4% for narrow wins, χ2-
test p-value < 0.001, odds ratio= 1.30, Fig. 4b), and are 24.5%
higher in their potential for bench-to-bedside translation (35.4%
for near misses, 28.4% for narrow wins, χ2-test p-value < 0.001,
odds ratio= 1.38, Fig. 4c). We also find that, all these conclusions
remain the same after conducting the conservative removal
procedure as described in Fig. 3 (Fig. 4e–g). Finally, to test if the
tendency toward clinical research can by itself account for the
observed citation difference between near misses and narrow
wins, we separated their publications into clinical and non-
clinical papers, finding that within non-clinical papers, near
misses again outperformed narrow wins (Fig. 4d, h). We repeated
all our analyses using the RD approach, recovering broadly
consistent conclusions (‘Matching strategy and additional results
in the RD regression’ in Supplementary Note 3). Together, the
results shown in Fig. 4 suggest that the uncovered effect of early-
career setback goes beyond citation measures, with near misses
outperforming narrow wins in both basic and translational
science.

Discussion
Overall, these results document that an early-career setback has
powerful, opposing effects, hurting some careers, but also, quite
surprisingly, strengthening outcomes for others. As such, these
findings show that prior setback can indeed be a mark of future
success. Screening effects may partly be responsible yet appeared
insufficient to explain the magnitude of the observed effects,
supporting the idea that failure may teach valuable lessons19–21,25.
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Fig. 4 Near misses (orange) outperformed narrow wins (blue) in both basic and translational science. Here, we considered three measures probing the
clinical relevance of their research: (1) clinical trial papers in the PubMed dataset (direct contribution to clinical translation); (2) papers cited by at least one
clinical trial paper (indirect contribution to clinical translation); (3) papers with potential to become translational research. Specifically, the approximate
potential to translate (APT) score was used to identify early signatures of bench-to-bedside translation. The score is estimated using machine learning
combining features such as MeSH terms, disease, therapies, chemical/drug, and citation rates. a Near misses outperformed narrow wins in terms of the
probability of producing clinical trial papers in the next 1–5 years, and 6–10 years; b The same as a but for papers cited by clinical trials in the future; c The
same as a but for papers with potential to be a translational research; d Hit paper probability by considering non-clinical trial papers only. e–h The same as
a–d but for the conservative removal (following the same procedure in Fig. 3b). ***p < 0.001, **p < 0.05, *p < 0.1; Error bars represent the standard error of
the mean
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The uncovered effects may operate according to multi-
dimensional mechanisms. We explored ten different observable
dimensions, including shifts in intellectual direction and leader-
ship, institutional locus, and collaboration patterns (see Methods
section). We find only a suggestive tendency for near-miss sci-
entists to publish in hot topic areas following treatment, although
accounting for this factor did not reduce the observed perfor-
mance gap (Supplementary Fig. 28). More generally, these
numerous observable features considered do not account alone or
collectively for the performance change, suggesting that unob-
servable dimensions may play a role, including effort, signaling,
and grit factors following setbacks21,23 or sacred sparks71. Cru-
cially, the empirical findings and conclusions reported in the
paper hold the same, regardless of the underlying processes.
Indeed, while most empirical and theoretical evidence in science
thus far documents that individuals benefit tremendously from
success1,2,4–8,29,52,59, our results offer among the first empirical
evidence showing that some individuals can also benefit from
setbacks, which may have broad implications for both individual
investigators and institutions that aim to support and
nurture them.

The design of our study necessitates the focus on near-miss
individuals among all others who had setbacks72,73. As with any
RD analysis, the effect pertains to the specific population on
which the experiment was conducted. While the RD approach
allows us to expand our sample to a wider range of setbacks by
controlling for evaluation scores, yielding the same conclusions
(see Methods section), to what degree our findings may generalize
substantially beyond near misses is a question we cannot yet
answer conclusively. Moreover, the opposing effects of early
setbacks also suggest there may exist population heterogeneities
in responses that are worth exploring further. Who tends to be
the most vulnerable, and who the most resilient? Quantitative
answers to these questions may be crucial for the interpretation of
our insights to inform policies and intervention strategies for
building a robust scientific workforce74.

Moreover, our analyses estimate the net advantage of near
misses over narrow wins, which is only detectable if the gross
advantage of early-career failure outweighs any benefits conferred
by success. Given the widespread, convincing evidence support-
ing the validity of the Matthew effect in science1,3–9,29,36 and
beyond3,10–13, where past success begets future success, these
results suggest that powerful, offsetting mechanisms may be at
work. This implies that, in areas where the Matthew effect
operates less, the net advantage of failure may be more pro-
nounced, suggesting that other domains provide important
additional avenues for future work.

Finally, note that our results do not imply that one should
strategically put roadblocks in the way of junior scientists, as the
precondition of becoming stronger is to not be killed in the first
place. The findings do suggest, however, that for those who
persevere, early failure should not be taken as a negative signal—
but rather the opposite, in line with Shinya Yamanaka’s advice to
young scientists, after winning the Nobel prize for the discovery
of iPS cells, “I can see any failure as a chance.”

Methods
Testing various generative processes. While the broad idea of a setback-driven
boost may take many forms, several such mechanisms may be detectable from data
in our context. For example, (A) did early-career setbacks propel persistent junior
scientists to attempt more novel research, whereas narrow wins were bound to their
original ideas? (B) Did early-career setbacks lead junior scientists to seek out
advantageous collaborations? Indeed, as teams are increasingly responsible for
producing high-impact work33,75, the observed performance gap might reflect
collaborations, whereby near misses more frequently teamed up with higher-
impact scientists and/or published fewer lead-author publications than their
narrow-win counterparts. Alternatively, the uncovered difference might reflect an

observable personal change process in terms of intellectual or physical mobility, as
captured by research direction shifts (hypothesis C)76 or changing institutions
(hypothesis D)77,78. We tested hypotheses A–D from our data, finding that there is
only a suggestive tendency for near-miss scientists to publish in hot topic areas
following treatment, although accounting for this finding does not reduce the
observed performance gap (Supplementary Fig. 28, ‘Combining hypotheses A-D’ in
Supplementary Note 4). However, none of the hypotheses alone can fully explain
the observed performance gap between near misses and narrow wins (see Sup-
plementary Note 4 for details, Supplementary Fig. 28); nor do these hypotheses
combine to explain the findings when we control for all the factors outlined in
hypotheses A–D together (‘Combining hypotheses A-D’ in Supplementary Note 4).
Overall, investigating these many dimensions narrows the potential interpretations
of our results while further suggesting that additional sub-processes may be at
work, including effort or grit factors following setbacks21,23, which are difficult to
observe directly from data and provide areas for future research. Crucially, the
empirical findings reported in the paper hold the same, net of potentially many
underlying processes.

Econometric model specification and estimation procedures. A possible con-
cern with the comparison between the near misses and narrow wins near the
threshold is endogeneity;52 i.e., there might be other factors that influence both the
funding decision and future career outcome. The finding that observable features of
the two groups are statistically indistinguishable prior to the funding decisions
helps diminish this concern. Further, were there some unobserved factor deter-
mining outcomes, such a factor would need to both advantage the narrow wins in
getting initial funding yet disadvantage them over the longer run, which may be
implausible. Nevertheless, to fully eliminate such endogeneity concerns, one needs
to employ a causal inference framework called fuzzy regression discontinuity
design (RD)63. In this section, we describe in detail our econometric model spe-
cification and estimation procedures.

The key idea of RD is that if decision rules create a jump in the likelihood of
treatment, often at an arbitrary threshold, we can exploit this local discontinuity as
an exogenous variable to predict outcome, instead of using the specific, realized
treatment outcome, which could be influenced by endogenous factors. Such RD
approaches have been widely used in the fields of education, labor, political
economy, health, crime, and environmental studies64, in addition to prior research
on funding data8,52,58,79.

In our setting, the likelihood of treatment (i.e., receiving funding) is largely
determined by the score of each proposal52,79. The highly nonlinear relationship
between the evaluation score and funding success (Fig. 1a) makes our fuzzy
regression discontinuity design feasible. More specifically, we can treat whether
scores fell just above or below the cutoff as an instrument to predict funding, and
then use the predicted funding outcome, rather than the actual funding outcome,
to predict future career outcome. The logic of this procedure is the following. Both
the actual funding outcome and future career outcome can be affected by
observable or unobservable factors. But since whether or not the score of the
proposal is above or below the funding threshold is not influenced by any
endogenous factors, if that as an instrumental variable can predict future career
outcome, then it means there must exist a link from funding outcome to future
career outcome, because the only way for the instrumental variable to influence
future career outcome is through the funding outcome. Detailed causality diagram
is shown in Supplementary Fig. 6. Another advantage of using the instrumental
variable approach is to allow us to control for the score itself (the so-called running
variable in RD), and thus control for any distinctions in applications that vary
smoothly with the score.

More specifically, we estimate the causal effect of early-career setbacks on future
career outcomes using two-stage least squares regression (2SLS): in the first stage,
the instrumental variable (being above or below the score threshold) is used to
predict the funding outcome; in the second stage future career outcomes are
regressed on the predicted funding outcome from the first stage. As illustrated in
Supplementary Fig. 6, the fuzzy RD approach eliminates any potential
unobservable factors (e.g., novelty bias, hot topic, grit personality, perseverance,
and so on) that might affect both the funding and career outcomes. This means,
any significant results obtained from this approach can be interpreted as causal
relationships.

More specifically, given the jump in the probability of receiving the funding at
s0 (i.e., normalized score 0), we have

P Fj ¼ 1jsj
� �

¼
g1 sj
� �

if sj � s0

g2 sj
� �

if sj < s0

8><
>: ; ð1Þ

where sj is the running variable, i.e., normalized score for proposal j, Fj is the

funding decision outcome, and g1 sj
� �

≠ g2ðsjÞ at s0. The probability to receive

treatment is

E Fjjsj
h i

¼ P Fj ¼ 1jsj
� �

¼ g2 sj
� �

þ g1 sj
� �

� g2 sj
� �h i

zj; ð2Þ

where zj= 1, if sj ≥ s0 and zj= 0 otherwise. Since s0 is the normalized score with a
funding threshold that divides the proposals at an arbitrary point, the dummy
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variable zj is uncorrelated with any observed or unobserved factors52. To this end,
we treat zj as the instrument variable and employ a simple two-stage least square
(2SLS) regression estimation. Let yit be some scientific outcome of individual i
during time period t, i.e., probability to publish hit papers, number of publications,
or number of hit papers. We conduct the estimation as follows:

1st stage : Fj ¼ α0 þ α1sj þ α2s
2
j þ � � � þ αps

p
j þ πizj þ θXi;pre þ μt þ ηn þ ηj; ð3Þ

2ndstage : yit ¼ β0 þ β1sj þ β2s
2
j þ � � � þ βps

p
j þ λF̂j þ γXi;pre þ μ′t þ η′n þ 2i; ð4Þ

where Xi,pre is the prior performance of researcher i, i.e., prior number of
publications, prior number of hit papers; μt and μ′t are grant time fixed effects for
application year, ηn and η′n are NIH institution fixed effects, p is the order of the
polynomial control of the running variable, and ηj and ∈i are error terms from the
first and second stage, respectively. Moreover, bFj is the predicted values from the
first stage, which are uncorrelated with the error term ∈i, and λ is the causal effect
of near miss on future career outcomes. For a large sample that span a significant
fraction of PIs around 0, we need careful controls of priority score. In the following
analyses, we added the linear control of score when considering ±10 discontinuity
sample (p= 1), and 3rd order polynomial control for ±25 discontinuity sample
(p= 3). Finally, we eliminate these polynomial controls as we restrict the sample to
the very narrow region around the discontinuity point63 (in our setting, ±5
discontinuity sample).

The credibility of these estimates hinges on the assumption of the lack of prior
knowledge of the cutoff, s0, so that individual scientists cannot precisely manipulate
the score to be above or below the threshold. This assumption is valid in our
setting, because the scores are given by external reviewers, and cannot be
determined precisely by the applicants. To offer quantitative support for the
validity of our approach, we run the McCrary test80 to check if there is any density
discontinuity of the running variable near the cutoff, and find that the running
variable does not show significant density discontinuity at the cutoff (bias=−0.11,
and the standard error= 0.076). Together, these results validate the key
assumptions of the fuzzy RD approach.

To understand the effect of an early-career near miss using this approach, we
first calculate the effect of near misses for active PIs. Using the sample whose scores
fell within −5 and 5 points of the funding threshold, we find that a single near miss
increased the probability to publish a hit paper by 6.1% in the next 10 years
(Supplementary Fig. 7a), which is statistically significant (p-value < 0.05). The
average citations gained by the near-miss group is 9.67 more than the narrow-win
group (Supplementary Fig. 7b, p-value < 0.05). By focusing on the number of hit
papers in the next 10 years after treatment, we again find significant difference:
near-miss applicants publish 3.6 more hit papers compared with narrow-win
applicants (Supplementary Fig. 7c, p-value 0.098). All these results are consistent
with when we expand the sample size to incorporate wider score bands and control
for the running variable (Supplementary Fig. 7a-c).

For our test of the screening mechanism, we employ a conservative removal
method as described in the main text (Fig. 3b) and redo the entire regression
analysis. We recover again a significant effect of early-career setback on the
probability to publish hit papers and average citations (Supplementary Fig. 7d, e).
For hits per capita, we find the effect of the same direction, and the insignificant
differences are likely due to a reduced sample size, offering suggestive evidence for
the effect (Supplementary Fig. 7f). Finally, in order to test the robustness of the
regression results, we further controlled other covariates including publication year,
PI gender, PI race, institution reputation as measured by the number of successful
R01 awards in the same period, and PIs’ prior NIH experience. We recovered the
same results (Supplementary Fig. 17).

Coarsened exact matching. To further eliminate the effect of observable factors
and consolidate the robustness of the results, we employed the state-of-art method,
i.e., Coarsened Exact Matching (CEM)61. The matching strategy further ensures the
similarity between narrow wins and near misses ex ante. The CEM algorithm
involves three steps:

1. Temporarily coarsen each control variable X for the purposes of matching;
2. Sort all observations into strata, each of which has the same values of the

coarsened X.
3. Prune from the data set the units in any stratum that do not include at least

one treated and one control unit.

Following the algorithm, we use a set of ex ante features to control for
individual grant experiences, scientific achievements, demographic features, and
academic environments; these features include the number of prior R01
applications, number of hit papers published within three years prior to treatment,
PI gender, ethnicity, reputation of the applicant’ institution as matching covariates.
In total, we matched 475 of near misses out of 623; and among all 561 narrow wins,
we can match 453. We then repeated our analyses by comparing career outcomes
of matched near misses and narrow wins in the subsequent ten-year period after
the treatment. We find near misses have 16.4% chances to publish hit papers, while
for narrow wins this number is 14.0% (χ2-test p-value < 0.001, odds ratio= 1.20,
Supplementary Fig. 21a). For the average citations within 5 years after publication,
we find near misses outperform narrow wins by a factor of 10.0% (30.8 for near

misses and 27.7 for narrow wins, t-test p-value < 0.001, Cohen’s d= 0.05,
Supplementary Fig. 21b). Also, there is no statistical significant difference between
near misses and narrow wins in terms of number of publications. Finally, the
results are robust after conducting the conservative removal (‘Matching strategy
and additional results in the RD regression’ in Supplementary Note 3,
Supplementary Fig. 21d-f).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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